Machine Learning with Scikit-Learn and TensorFlow: 2-in-1

Machine Learning with Scikit-Learn and TensorFlow: 2-in-1

Machine Learning with Scikit-Learn and TensorFlow: 2-in-1. With the help of this course you can Learn to implement and evaluate machine learning solutions with scikit-learn and TensorFlow.

This course was created by Packt Publishing. It was rated 4.2 out of 5 by approx 11637 ratings. There are approx 71878 users enrolled with this course, so don’t wait to download yours now. This course also includes 7 hours on-demand video, Full lifetime access, Access on mobile and TV & Certificate of Completion.

What Will You Learn?

  • Boost the performance of the traditional supervised and unsupervised machine learning models with the use of Deep Learning

  • Build deep learning models and use them to solve real problems

  • Learn to build neural network models

  • Understand the basic workflow of building models and implement TensorFlow programs

  • Gain practice using both the low-level and the high-level APIs of TensorFlow and understand which one is better for your project

  • Explore different techniques to solve problems that arise while performing predictive analytics

Scikit-learn has evolved as a robust library for machine learning applications in Python with support for a wide range of supervised and unsupervised learning algorithms. TensorFlow is quickly becoming the technology of choice for deep learning, because of its ease to  build powerful and sophisticated neural networks. To perform traditional machine learning tasks in supervised learning and unsupervised learning using cutting-edge techniques from deep learning, you need to be familiar with Python and basic machine learning concepts.

This comprehensive 2-in-1 course teaches you how to perform your day-to-day machine learning tasks with Scikit-learn and TensorFlow. It’s a perfect blend of concepts and practical examples which makes it easy to understand and implement. It follows a logical flow where you will be able to build on your understanding of the different machine learning concepts with every section.

This training program includes 2 complete courses, carefully chosen to give you the most comprehensive training possible.

The first course, TensorFlow 1.X Recipes for Supervised and Unsupervised Learning, starts off with covering the basics of TensorFlow. You will then learn to improve the performance and speed of your machine learning models with the use of deep learning techniques. You will also gain hands-on experience of using both low-level and high-level APIs in TensorFlow to understand which one is better for your project. Next, you will perform unsupervised learning using cutting-edge techniques from deep learning.

The second course, Advanced Predictive Techniques with Scikit-Learn and TensorFlow, teaches you how to use ensemble algorithms to combine many individual predictors to produce better predictions. You will learn to apply advanced techniques such as dimensionality reduction to combine features and build better models. You will also learn to evaluate models and choose the optimal hyper-parameters using cross-validation. Next, you will understand the foundations for working and building models using neural networks. Finally, you will learn different techniques to solve problems that arise while performing predictive analytics in real-world scenario.

By the end of this Learning Path, you’ll be able to perform traditional machine learning tasks in supervised learning and unsupervised learning using cutting-edge techniques from deep learning. Also, you’ll learn how to go from building basic predictive models to advanced models to produce better predictions.

Meet Your Expert(s):

We have the best work of the following esteemed author(s) to ensure that your learning journey is smooth:

Alvaro Fuentes is a Data Scientist with an MSc in Quantitative Economics and MSc in Applied Mathematics with more than 10 years of experience in analytical roles. He worked at the Central Bank of Guatemala as an Economic Analyst, building models for economic and financial data. He founded Quant Company to provide consulting and training services in Data Science topics and has been a consultant for many projects in fields such as Business, Education, Psychology, and Mass Media. He also has taught many (online and on-site) courses to students from around the world in topics such as Data Science, Mathematics, Statistics, R programming, and Python.

Rating:
4.5

Download Links

Get Download Link

Related Courses

Introduction to ML Classification Models using scikit-learn

Machine Learning & Tensorflow – Google Cloud Approach

Pandas for Predictive Analysis using scikit-learn

The Complete TensorFlow Masterclass: Machine Learning Models

Hands-on Machine Learning with TensorFlow

Machine Learning with TensorFlow

Mobile Machine Learning for Android: TensorFlow & Python

LEARNING PATH: R: Machine Learning and Deep Learning with R

Building Machine Learning Systems with TensorFlow

Learning Path: R: Complete Machine Learning & Deep Learning

A Gentle Introduction to Machine Learning Using SciKit-Learn

A Gentle Introduction to Machine Learning Using SciKit-Learn

Machine learning with Scikit-learn

Machine learning with Scikit-learn

SciKit-Learn in Python for Machine Learning Engineers

SciKit-Learn in Python for Machine Learning Engineers

Machine Learning with Apache Spark 2: 2-in-1

Machine Learning with Apache Spark 2: 2-in-1

Advanced Predictive Techniques with Scikit-Learn& TensorFlow

Advanced Predictive Techniques with Scikit-Learn& TensorFlow

Python Machine Learning and Troubleshooting: 2-in-1

Python Machine Learning and Troubleshooting: 2-in-1

Learning Path: TensorFlow: Machine & Deep Learning Solutions

Learning Path: TensorFlow: Machine & Deep Learning Solutions

Deep Learning with TensorFlow and Google Cloud AI: 2-in-1

Deep Learning with TensorFlow and Google Cloud AI: 2-in-1

TensorFlow: Application Development Using TensorFlow: 2-in-1

TensorFlow: Application Development Using TensorFlow: 2-in-1

Machine Learning In The Cloud With Azure Machine Learning

Machine Learning In The Cloud With Azure Machine Learning
Go To Top